Watch the traffic signal: a signal state extraction system for naturalistic driving videos

Dongxi Zheng
Madhav V. Chitturi
David A. Noyce
John Lee

Naturalistic driving studies (NDS) are revolutionizing road safety research. Naturalistic driving data provide a new window into driver behavior that promises a deeper understanding than was ever possible with crash data, roadside observations, or driving simulator experiments. NDS collect extensive vehicle network data, vehicle internal videos (e.g., drivers and passengers), and vehicle external videos (e.g., forward roadway). The video record of the driver and surrounding road situation often provide a more revealing account of driver behavior. Data size becomes a double edged sword for most NDS. Fully or partially automated procedures are needed for data reduction. Both intentional and unintentional violations of traffic signals can cause severe consequences, like fatal right-angle crashes. Knowing the signal state when the driver navigated through the intersection is the first step towards judging the driver’s compliance and analyzing deeper human factors issues. A system that codes traffic signal state from georeferenced front-view videos was developed for use with the Second Strategic Highway Research Program (SHRP2) NDS data. GPS coordinates and a free online map database are used to identify candidate frames from lengthy videos for computer vision processing. The computer vision algorithm uses color histograms and shape matching to detect traffic signals. Vehicle movement is used to select, from multiple signals the one corresponding to the vehicle’s traffic lane. Temporal relationship between frames is employed for the purpose of refining detection results. Experiments were conducted on daytime videos and showed reasonable performance given the severe challenges posed by the SHRP2 data. Misclassifications were primarily due to other vehicles’ taillights, reddish yellow signals, yellowish red signals, green traffic signs, etc. Misses were due to distant frames with very few pixels corresponding to the signals and reduced color conspicuity compared to background scenes (e.g., green signals and the sky look similar). The system is an insightful first step towards using computer vision techniques to support signal state coding of the large volumes of naturalistic driving video data. Challenges revealed by the experimental results are valuable knowledge for future improvement.

LATEST NEWS


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


2017-11-30

New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


2017-11-30

Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...