Utvärdering av städmaskiners förmåga att minska PM10-halter

Cecilia Bennet
Christer Johansson
Michael Norman
Billy Sjövall

In this project three road sweepers' effect on PM10 concentrations in ambient air and on the road surface has been tested. Two studies have been carried out; one in street environment at Sveavägen in central Stockholm, Sweden, and one with controlled trials at Barkarby airport.

The tests at Sveavägen showed that the sweepers' effect on total PM10 concentrations was small. In particularly favourable meteorological conditions, however, significant decreases in the local PM10 contribution of up to 20% could be found. Sweeper A contributed more often to elevated PM10 concentration during drive-by than sweeper B, while sweeper B more frequently contributed to elevated NOx levels. The dust depot on the road surface proved difficult to evaluate. In sweeper A's road stretch was, however, the main depot along the roadside, while it was greatest along the road center in sweeper B's stretch.

Tests at Barkarby showed that sweeper B, under dry conditions (sweeper A was deleted) managed to clean up an applied material to about 85-95% (slightly lower for PM10). In moist conditions (sweeper B was deleted) the efficiency of sweeper A was slightly over 40% for the entire material, while significantly lower (approx. 5%) for PM10. Sweeper C, which only took part in the moist test, cleaned approximately 99% of the applied material and the efficiency for PM10 was the same.

Overall, this project shows that road sweepers can contribute to decreased concentrations of PM10 in environments where road dust suspension is an important source of particulate matter, but also that sweeping technology and sweeping strategy need to be developed to work well under different meteorological conditions.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...