Using naturalistic field operational test (FOT) data to identify horizontal curves

Publisher's full text
Sarbaz Othman
Robert Thomson
Gunnar Lannér

Investigations to identify relationships between crashes and road features usually deal with effects of only one or two of the main components of traffic safety, i.e., human, vehicle, and infrastructure performance. There are several contributing factors of the components that together lead to a crash. This study devises an approach to include information from all three components in a system using field operational test (FOT) data. FOT data are recorded from real-life driving that is different from traffic simulations and specific on-site data collection. The study focuses on identifying horizontal curves using FOT and provides access to vehicle and human response data at the exact time when the vehicle drove in a specific location. A method has been developed to derive path radius and to identify start-end points of horizontal curves using FOT data. With this information, vehicle response signals and human behavior data can then be arranged on a common axis referenced to the curve. The approach also identifies lane changing maneuvers on curves that can be used to evaluate potential crash triggers. The application of this method allows for reviewing changes in the regulatory speed limit, curve geometry, or crash history and thus evaluates the design of curves and choosing appropriate countermeasures.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


2017-06-29

Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017.