Traffic safety effects when overtaking 30 meter trucks

The purpose of this paper is to investigate if the introduction of extra-long and heavy trucks has an effect on traffic safety on Swedish roads, especially in relation to overtaking maneuvers. Traffic safety effects will be measured in terms of road user behavior concerning accelerations and time slots. First, focus group interviews with heavy truck drivers. Truck drivers that do not drive extra-long trucks believe that the introduction of extra-long trucks will create a number of traffic safety problems especially in terms of conflicts with ordinary road users. The drivers of extra-long trucks do not experience the problems that ordinary truck drivers predict. The problems they experience can be taken care of with more planning (thinking ahead). They also believe that the traffic sign on the back of the extra-long vehicle has a positive effect. The truck company, working environment and truck equipment are other important aspects mentioned by the drivers of the extra-long vehicles.

The simulator study investigates overtaking situations on a 2+1-lane highway, with extra-long trucks (30.4 m) and ordinary trucks (18.75 m). The results reveal that the distance from the rear/front of the truck to the point where only one lane exists affects car drivers’ decision to overtake, independently of truck length. If the truck is in the relatively same position, the timeslot for a safe overtaking maneuver before next one-lane section was reduced significantly for extra-long trucks compared to ordinary trucks. The conclusion is that there exist small tendencies which point in the direction of enhanced traffic safety problems with the introduction of extra-long trucks. The results should, however, be interpreted with caution as the number of data points was few and collected in specific situations and in specific conditions. It was neither considered how the introduction of longer and heavier trucks, given a constant amount of goods, reduces the number of heavy trucks on the road network.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...