Road surface wetness as affected by evaporation, surface runoff and traffic splashing

Mats Riehm
Per-Erik Jansson

Road surface wetness governs the fate of pollutants on the road surface. The wetness is also important for estimating the risk of ice formation during winters. The road surface water is affected by evaporation, run-off and traffic induced splash and spray. Increased knowledge of how these processes govern the road surface water and how they could be modelled would help to improve the possibility to abate problems with raised levels of air pollutants, as well as traffic safety issues by facilitating optimization of the use of anti- and de-icing chemicals. The aim of this study was to use a modeling tool in order to differentiate between three processes governing the loss of wetness from the road surface within a cross section of a road during two different climatic scenes (winter and spring). Two new measurement techniques were used for detailed measurements of road surface wetness across a road to validate the model. It could be concluded that the changes in wetness on the road can be simulated from general simple weather and traffic information. Furthermore, the wetness across the road is very heterogeneous and can be described by a distribution of regulating parameter values. The presented model application has a potential for real time application on roads and within a region and also for predictions of future conditions by using weather forecast data.



Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.



Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...