Reduction of errors when estimating emissions based on static traffic model outputs

Nikolaos Tsanakas
Joakim Ekström

The rapid growth of traffic congestion has led to an increased level of emissions and energy consumption in urban areas. Well designed infrastructure and traffic controllers along with more efficient vehicles and policy measures are required to mitigate congestion and thus reduce transport emissions. In order to evaluate how changes in the traffic system affect energy use and emissions, traffic analysis tools are used together with emission models. In large urban areas emission models mainly rely on aggregated outputs from traffic models, such as the average link speed and flow. Static traffic models are commonly used to generate inputs for emission models, since they can efficiently be applied to larger areas with relatively low computational cost. However, in some cases their underlying assumptions can lead to inaccurate predictions of the traffic conditions and hence to unreliable emission estimates. The aim of this paper is to investigate and quantify the errors that static modeling introduces in emission estimation and subsequently considering the source of those errors, to suggest and evaluate possible solutions. The long analysis periods that are commonly used in static models, as well as the static models' inability to describe dynamic traffic flow phenomena can lead up to 40 % underestimation of the estimated emissions. In order to better estimate the total emissions, we propose the development of a post processing technique based on a quasi-dynamic approach, attempting to capture more of the excess emissions created by the temporal and spatial variations of traffic conditions



Open seminar with Mistra SAMS international scientific advisory...

Mistra SAMS international scientific advisory panel (ISAP) is visiting Stockholm, and the program will host an open seminar where the panel members will give talks in their area of expertise.

ERPUG 2017

The five year anniversary of  European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017. 



Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017. 


Crash testing bicycles at VTI

For the first time single bicycle crashes have been simulated at the VTI crash safety laboratory.


A case study exploring firefighters’ and municipal officials’ preparedness for electrical vehicles

A VTI-study presents a social perspective on new vehicle technology. It explores the self-reported preparedness of the fire departments (i.e., rescue services) in Sweden’s three largest cities regarding rescue operations involving electrical vehicles (EVs).


Pioneering research on and about bicycles at VTI

Under what circumstances might cyclists lose tyre grip? What actions could then be taken to prevent a crash? VTI is currently developing a theoretical model of the behaviour of bicycle tyres during braking and steering in different situations and on different...


Virtual pedestrians create efficient stations

If more people are to choose sustainable travel, then the public transport stations of the future must be designed so that pedestrians can get where they are going quickly, without congestion or queues. The Swedish Road and Transport Research Institute (VTI)...