Predicting visual distraction using driving performance data

Behavioral variables are often used as performance indicators (PIs) of visual or internal distraction induced by secondary tasks. The objective of this study is to investigate whether visual distraction can be predicted by driving performance PIs in a naturalistic setting. Visual distraction is here defined by a gaze based real-time distraction detection algorithm called AttenD. Seven drivers used an instrumented vehicle for one month each in a small scale field operational test. For each of the visual distraction events detected by AttenD, seven PIs such as steering wheel reversal rate and throttle hold were calculated. Corresponding data were also calculated for time periods during which the drivers were classified as attentive.

For each PI, means between distracted and attentive states were calculated using t-tests for different time-window sizes (2 - 40 s), and the window width with the smallest resulting p-value was selected as optimal. Based on the optimized PIs, logistic regression was used to predict whether the drivers were attentive or distracted. The logistic regression resulted in predictions which were 76 % correct (sensitivity = 77 % and specificity = 76 %).

The conclusion is that there is a relationship between behavioral variables and visual distraction, but the relationship is not strong enough to accurately predict visual driver distraction. Instead, behavioral PIs are probably best suited as complementary to eye tracking based algorithms in order to make them more accurate and robust.



Open seminar with Mistra SAMS international scientific advisory...

Mistra SAMS international scientific advisory panel (ISAP) is visiting Stockholm, and the program will host an open seminar where the panel members will give talks in their area of expertise.

ERPUG 2017

The five year anniversary of  European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017. 



Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017. 


Crash testing bicycles at VTI

For the first time single bicycle crashes have been simulated at the VTI crash safety laboratory.


A case study exploring firefighters’ and municipal officials’ preparedness for electrical vehicles

A VTI-study presents a social perspective on new vehicle technology. It explores the self-reported preparedness of the fire departments (i.e., rescue services) in Sweden’s three largest cities regarding rescue operations involving electrical vehicles (EVs).


Pioneering research on and about bicycles at VTI

Under what circumstances might cyclists lose tyre grip? What actions could then be taken to prevent a crash? VTI is currently developing a theoretical model of the behaviour of bicycle tyres during braking and steering in different situations and on different...


Virtual pedestrians create efficient stations

If more people are to choose sustainable travel, then the public transport stations of the future must be designed so that pedestrians can get where they are going quickly, without congestion or queues. The Swedish Road and Transport Research Institute (VTI)...