Permanent deformation characteristics of silty sand subgrades from multistage RLT tests

Publisher's full text
Farhad Salour

Rutting is one of the main forms of distresses in thin flexible pavement structures, often associated with accumulation of permanent deformation in unbound granular layers and subgrade soils under traffic loading. Realistic prediction of surface rutting requires models that can reliably capture the cumulative plastic deformation of pavement unbound layers under repeated loads. This study presents an evaluation of three models that incorporate the time-hardening concept for prediction of permanent deformation of silty sand subgrade materials.

A series of multistage repeated load triaxial (RLT) tests, in which the material underwent a wide range of continuous stress conditions, were carried out on two silty sand subgrades. The RLT tests were conducted at four different moisture contents in which pore suctions were measured throughout the test. In the modelling of the permanent deformations, the effective stress approach was used taking into account the effects of soil suctions. The material parameters of the predictive models were optimised using the RLT test data and the effect of moisture content (matric suction) on the permanent deformation characteristics of the materials and the predictive model parameters were investigated.

Generally, it was observed that the modified models that are based on the shakedown approach performed reasonably well in capturing the permanent deformation behaviour of the selected subgrade materials with minor discrepancies between the models. This indicates that using multistage RLT tests can be an efficient approach for characterising the permanent deformation behaviour of subgrade soils.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...