Performance of a one-camera and a three-camera system

Erik Ivarsson
Albert Kircher
Bosse Rydbeck
Matias Viström

Driving and operating a vehicle is to a great extent a visual task. In driver behaviour studies it is therefore important to be able to measure where the driver is looking. Today this can be done unobtrusively and remotely in real-time with camera based eye tracking. The most common remote eye tracking systems use multiple cameras in order to give satisfactory results. However, promising results using only one camera has recently emerged on the market. The main objective of this study is to compare eye tracking systems with one and three cameras, respectively, during various measurement conditions.

A total of 53 participants were enrolled in the study. Data from the two eye trackers were acquired and analysed in terms of availability, accuracy and precision. The results indicate that both availability and accuracy are affected by many different factors. The most important factors are the number of cameras that is used and the angular distance from straight ahead. In the central region (straight ahead) both one-camera and three-camera systems have a high degree of accuracy and availability, but with increasing distance from the central region, the results deteriorate. This effect falls harder upon the one-camera system. Interestingly, there were no significant effects when wearing glasses in either availability or accuracy. There was however an interaction effect between distance and glasses.

Advantages with a one-camera system are that it is cheaper, easier to operate and easier to install in a vehicle. A multi-camera system will, on the other hand, provide higher availability and accuracy for areas that are far from the road centre. A one-camera system is thus mostly suitable for in-vehicle applications such as systems that warn drivers for sleepiness or distraction while multi-camera solutions are preferable for research purposes.



Cost Benefit Analysis (CBA) workshop in Stockholm

An open seminar and workshop in Stockholm will be held on 25-26 April 2018. The workshop deals with the use of CBA as a basis for decision-making in the public sector. The workshop is organized by, among others, Professor Jan-Eric Nilsson, VTI.



Ulf Sandberg has been presented with the TTI Lifetime Achievement Award 2018

VTI’s Senior Research Leader Ulf Sandberg has been presented with the TTI Lifetime Achievement Award 2018 for his work on research into tyres and road surface.


Steps need to be taken to increase traffic safety of automated cars

Several steps are necessary to ensure that automated and connected cars will lead to increased traffic safety – everything from ensuring that technology takes vulnerable road users into account, to new forms of driver training. This has emerged in a position...


FALCON examines challenges in the transport sector

VTI is one of several important partners in the major FALCON project*, whose purpose is to create knowledge and insight regarding the transport sector. In an initial subproject, VTI has produced a manual on transport, logistics and multimodality.


VTI joined research cooperation in China

In December 2017 VTI became a member of China-Sweden Research Centre for Traffic Safety (CTS).


Swedish German research collaboration on Electric Road Systems

The project “Swedish-German research collaboration on Electric Road Systems” (CollERS) has now officially started. The goal of the project is to increase the common knowledge around Electric Road Systems by cooperation between Germany and Sweden and to...


Electric Road Systems Conference 2018

After a successful first conference in June 2017, the Swedish research and innovation platform for electric roads is arranging the second dedicated International Conference on Electric Road Systems (ERS) June 13th and 14th 2018.