Driftåtgärder mot PM10 i Stockholm: utvärdering av vintersäsongen 2015–2016

Christer Johansson
Michael Norman
Sanna Silvergren

Since 2011, Stockholm has made special efforts to reduce PM10 levels in the city. The efforts mainly include dust binding with CMA (calcium magnesium acetate) and vacuum suction with a powerful dry vacuum suction machine. This report summarizes effects on particulate matter and road dust storage, as the actions taken by Stockholm City during the 2015–2016 season and discusses how measures can be further improved. The limit value for the environmental quality standard was not exceeded for the 2015–2016 season for the third consecutive year, but the number of days with PM10 levels over the environmental quality standard was higher than in the previous season, which had a record low number of exceedances. The evaluation of daytime dust binding was complicated by the fact that the CMA was also used on the reference street, which caused to much uncertainties to provide quantitative analysis of its effect this season. Block-wise dust binding and vacuuming could not be evaluated due to dust contamination from a construction site. The dust load on the streets varies from a few g/m2 to about 250 g/m2 depending on the street and season and is highest during the winter (Dec–Jan). A trend towards lower dust loads is broken this season on several streets, which may be due to the damper streets in spring. Analyses made on the connection between dust load, PM10 and impacting factors, as well as a condition-based calculation method suggests that dust binding in spring is important for keeping the levels down, while dust binding in autumn and winter is more often “unnecessary” (the levels would probably not have exceeded the limit value also without dust binding).



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...