On Physical Relations in Driving: Judgements, Cognition and Perception

Download
Mäntylä Timo
Ola Svenson
Wändi Bruine de Bruin

Drivers need to make judgements of physical relationships related to driving speed, such as mean speed, risks, travel time and fuel consumption, in order to make optimal choices of vehicle speed. This is also the case for the general public, politicians and other stakeholders who are engaged in traffic issues. This thesis investigates how drivers’ judgements of travel time (Study I and II), fuel consumption (Study III) and mean speed (Study IV) relate to actual physical measures.

A cognitive time-saving bias has been found in judgements of travel time. The time saving bias implies that people overestimate the time saved when increasing speed from a high speed and underestimate the time saved when increasing speed from a low speed. Previous studies have mainly investigated the bias from a cognitive perspective in questionnaires. In Study I the bias was shown to be present when participants were engaged in a driving simulator task where participants primarily rely on perceptual cues. Study II showed that intuitive time saving judgements can be debiased by presenting drivers with an alternative speedometer that indicate the inverted speed in minutes per kilometre.

In Study III, judgements of fuel consumption at increasing and decreasing speeds were examined, and the results showed systematic deviations from correct measures. In particular, professional truck drivers underestimated the fuel saving effect of a decrease in speed. Study IV showed that subjective mean speed judgements differed from objective mean speeds and could predict route choice better than objective mean speeds. The results indicate that biases in these judgements are robust and that they predict behaviour.

The thesis concludes that judgements of mean speeds, time savings and fuel consumption systematically deviate from physical measures. The results have implications for predicting travel behaviour and the design of driver feedback systems.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...