Moisture sensitive and stress dependent behavior of pavement unbound materials from in situ falling weight deflectometer tests

Publisher's full text
Farhad Salour

In an instrumented flexible pavement with subsurface drainage system, a field study was performed to investigate the influence of water on the response of the pavement structure. The drainage system of the structure was clogged during a three-month period, allowing the groundwater to rise and the structure to undergo high moisture conditions. Thereafter the drainage was reopened allowing the structure to approach its previous draining hydrological state. Along with subsurface groundwater level and moisture content monitoring, the structural response of the pavement was studied by conducting frequent Falling Weight Deflectometer tests with multilevel loads. The stress sensitivity of the unbound layers and the influence of moisture on their stiffness were studied using the data with an effort to determine the unbound materials nonlinear parameters through a backcalculation algorithm. The groundwater level rose rapidly after the drainage was clogged. It significantly affected the overall stiffness of the pavement structure and the backcalculated stiffness of the unbound layers decreased as their moisture content increased. It was further observed that the unbound layers exhibited stress-dependent behavior to multilevel loads. The subgrade showed stress-softening response in unsaturated condition and stress-independent behavior in saturated state. The granular layer exhibited stress-hardening behavior. Backcalculation of the unbound nonlinear parameters according to the universal extended k-? model revealed that the k1 parameter decreased with increasing moisture content for both the unbound granular layer and the unsaturated fine grained subgrade material.



Vision Zero for Sustainable Road Safety in the Baltic Sea Region

The conference Vision Zero for Sustainable Road Safety in the Baltic Sea Region is held i Vilnius, Lithuania. VTI is part of the organisation committé and also one of the speakers.



ADAS&ME is tackling the interaction between people and technology

ADAS&ME is a major EU project focused on automation, the human condition and the human environment. The budget is EUR 9.6 million and VTI is the coordinator.


Users contribute to the development of train simulators

Apart from advanced driving simulators, VTI has developed several variations of train simulators which are used for training, education and research. In recent years, interest has increased drastically among major actors in the railway sector, and VTI has...


VR study to contribute to a better working environment for bus drivers

A study where bus drivers test autonomous driving in a VR environment may contribute to a better working environment with reduced stress on the driver and safer driving.


Non-native plant species spread via transport systems

Researchers at VTI have compiled a report on non-native invasive plant species in Sweden and how they spread via transport systems.


EU-project VIRTUAL: improving road safety with virtual crash tests

Crash tests are used to improve safety on roads. Therefore the EU now funds a research project to develop virtual methods of crash testing. VTI coordinates the project, called VIRTUAL. The project now invites experts interested in Human Body Modeling to join...


EU project protects cyclists and pedestrians

According to the World Health Organisation, more than one quarter of road traffic fatalities in 2010 were pedestrians and cyclists. Every year, about 335,000 unprotected road users die because of traffic accidents, which shows the scale of the problem. The EU...