Modelling and Simulation for Evaluation of Cooperative Intelligent Transport System Functions

Tony Ingemar Larsson
Kenneth Lind

Future vehicles are expected to be equipped with wireless communication technology, that enables them to be “connected” to each others and road infrastructures. Complementing current autonomous vehicles and automated driving systems, the wireless communication allows the vehicles to interact, cooperate, and be aware of its surroundings beyond their own sensors’ range. Such sys- tems are often referred to as Cooperative Intelligent Transport Systems (C-ITS), which aims to provide extra safety, efficiency, and sustainability to transporta- tion systems. Several C-ITS applications are under development and will require thorough testing and evaluation before their deployment in the real-world. C- ITS depend on several sub-systems, which increase their complexity, and makes them difficult to evaluate.

Simulations are often used to evaluate many different automotive applications, including C-ITS. Although they have been used extensively, simulation tools dedicated to determine all aspects of C-ITS are rare, especially human factors aspects, which are often ignored. The majority of the simulation tools for C-ITS rely heavily on different combinations of network and traffic simulators. The human factors issues have been covered in only a few C-ITS simulation tools, that involve a driving simulator. Therefore, in this thesis, a C-ITS simulation framework that combines driving, network, and traffic simulators is presented. The simulation framework is able to evaluate C-ITS applications from three perspectives; a) human driver; b) wireless communication; and c) traffic systems.

Cooperative Adaptive Cruise Control (CACC) and its applications are chosen as the first set of C-ITS functions to be evaluated. Example scenarios from CACC and platoon merging applications are presented, and used as test cases for the simulation framework, as well as to elaborate potential usages of it. Moreover, approaches, results, and challenges from composing the simulation framework are presented and discussed. The results shows the usefulness of the proposed simulation framework.



ICTTP 2020

ICTTP, International Conference on Traffic and Transport Psychology, is held in Gothenburg, Sweden.



Report regarding government commission on the costs of traffic to society has been submitted

Since 2013, the Swedish National Road and Transport Research Institute (VTI) has had several government commissions to produce documentation on the costs to society caused by traffic. On 1 November 2018, the agency reported its latest commission, Samkost 3....


International standardisation efforts have many advantages

VTI participates in several international standardisation committees. The work is important because it helps to ensure that standards can be adapted to Swedish conditions and it also provides access to valuable contacts and networks.


China wants to work with the best

Through the CTS cooperation, VTI is gaining valuable research contacts with China. The country is facing major challenges in the field of road safety but also has enormous potential.


VTI participated in conference on electric roads

Systems with electrified roads are a relatively new concept and many projects have been launched in recent years. To stimulate the transfer of knowledge and collaboration, the Research and Innovation Platform for Electric Roads arranged its second...


ADAS&ME is tackling the interaction between people and technology

ADAS&ME is a major EU project focused on automation, the human condition and the human environment. The budget is EUR 9.6 million and VTI is the coordinator.


Users contribute to the development of train simulators

Apart from advanced driving simulators, VTI has developed several variations of train simulators which are used for training, education and research. In recent years, interest has increased drastically among major actors in the railway sector, and VTI has...