Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform

Romain Balieu
Xiaohu Lu
Niki Kringos

Aiming to quantitatively evaluate the microstructure of polymer-modified bitumen (PMB) for roads, this paper employs the two-dimensional fast Fourier transform (2D-FFT) to process the microscopic and numerical images of four PMBs. The related derivative parameters, including the characteristic frequency and wavelength, are computed from the 2D-FFT power spectrum. The results show that the absence/presence of a characteristic frequency (range) on the power spectrum can indicate the lack/existence of the corresponding periodical structural pattern(s) in the original PMB image. A lower characteristic frequency usually represents a coarser PMB microstructure while a higher one implies a finer PMB microstructure. The 2D-FFT method is thus valid for differentiating various PMB microstructures. The proposed method is also capable of quantitatively evaluating the effects of temperature and the temporal evolution of PMB microstructure during phase separation. As the separation continues, the decrease of characteristic frequency indicates the coarsening process of a PMB microstructure. Additionally, the numerical reproduction of the observed phase separation is evaluated with the same method. The quantitative comparison with the experimental results reveals that the simulations fairly reproduced the microscopy observation results despite some deviation. The proposed method provides a foundation for the microstructure-based modelling of PMB performance in the future.



Cost Benefit Analysis (CBA) workshop in Stockholm

An open seminar and workshop in Stockholm will be held on 25-26 April 2018. The workshop deals with the use of CBA as a basis for decision-making in the public sector. The workshop is organized by, among others, Professor Jan-Eric Nilsson, VTI.



Modal shift for an environmental lift?

Investigations in Sweden and other countries suggest a shift of goods transport from road to rail and waterborne transport to reach environmental and climate objectives. VTI is leading a new project to investigate how the modal shift can contribute and what...


Automation and digitalisation are making rail competitive

Road transport is developing rapidly and its productivity has increased sharply. Rail transport, however, has not developed at the same rate. Automation and digitalisation are essential if rail freight in Europe is to survive.


New research is creating a driverless logistics chain

The research project Born to Drive has come up with a system that allows new cars to move, without a driver, from the production line out to the parking area prior to being transported elsewhere. The vision is to automate the entire logistics chain from...


VTI testing automation in EU project

VTI is leading a series of tests in a major EU project on automated driving. The first driving tests were carried out n a test track in Slovenia in December. The project will focus in part on acceptance among different groups in society, in part on...


Freight transportation on road and rail analysed

Freight transport accounts for a large proportion of the emissions, noise and congestion produced by road traffic. Transporting freight in larger but fewer lorries could reduce the problem. At the same time it might entail freight being diverted from more...


Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...