Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform

Download
Romain Balieu
Xiaohu Lu
Niki Kringos

Aiming to quantitatively evaluate the microstructure of polymer-modified bitumen (PMB) for roads, this paper employs the two-dimensional fast Fourier transform (2D-FFT) to process the microscopic and numerical images of four PMBs. The related derivative parameters, including the characteristic frequency and wavelength, are computed from the 2D-FFT power spectrum. The results show that the absence/presence of a characteristic frequency (range) on the power spectrum can indicate the lack/existence of the corresponding periodical structural pattern(s) in the original PMB image. A lower characteristic frequency usually represents a coarser PMB microstructure while a higher one implies a finer PMB microstructure. The 2D-FFT method is thus valid for differentiating various PMB microstructures. The proposed method is also capable of quantitatively evaluating the effects of temperature and the temporal evolution of PMB microstructure during phase separation. As the separation continues, the decrease of characteristic frequency indicates the coarsening process of a PMB microstructure. Additionally, the numerical reproduction of the observed phase separation is evaluated with the same method. The quantitative comparison with the experimental results reveals that the simulations fairly reproduced the microscopy observation results despite some deviation. The proposed method provides a foundation for the microstructure-based modelling of PMB performance in the future.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...