Mechanistic performance modelling of rutting in pavement structures

A mechanistic empirical (M–E) approach has been developed and thereafter used to calculate the degradation behaviour of two arterial roads in Southern Sweden. The results were then compared with measurements from the Swedish long term pavement performance (LTPP) database. The M-E approach used was a two-step procedure where the response of the structure was calculated mechanistically and thereafter the performance predicted empirically based on scaling of laboratory test results. Extensive laboratory testing was carried out on samples taken from the test roads. Traffic counting and Bridge Weigh-in-Motion data were used to determine the amount of traffic loading, and data from weather stations were used to take into account the temperature dependency of the asphalt bound layers. The analysis shows that the rutting development can be simulated adequately although the calculations show slower rate than the measurements towards the end of the simulated period. The discrepancy in the rate of rutting between the measurements and the observations that was observed after about 9 years of operation might be due to the fact that no ageing or disintegration in material characterization was incorporated in the numerical analysis but surely observed in reality.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...