LED (Light-Emitting Diode) road lighting in practice: An evaluation of compliance with regulations and improvements for further energy savings

Download
Annika K Jägerbrand

Light-emitting diode (LED) road lighting has been widely implemented in recent years, but few studies have evaluated its performance after installation. This study investigated whether LED road lighting complies with minimum regulations in terms of traffic safety and whether improvements for energy efficiency are possible. Average road surface luminance (L), overall luminance uniformity (U0), longitudinal luminance uniformity (U1), power density (PD) and normalised power density (PN) were evaluated for 14 roads (seven designed for vehicular traffic and seven for pedestrians and bicycles). Energy savings were calculated as the percentage reduction to the minimum level of the existing lighting class or a lower lighting class and by applying a dimming schedule. The results showed that LED road lighting for vehicular traffic roads generally fulfilled the requirements, whereas that for pedestrian and bicycle roads generally corresponded to the lowest lighting class for L, and often did not meet the statutory requirements for U0 and UI. By adapting lighting levels to the minimum requirement of the existing lighting class or by dropping to a lower lighting class, vehicular traffic roads could save 6%-35% on L to lighting class M5 and 23%-61% on L to lighting class M6. A dimming schedule could lead to energy savings of 49%. There is little potential for savings on pedestrian and bicycle roads, except by implementing a dimming schedule. Thus, in general, for vehicular, pedestrian and bicycle roads, a dimming schedule can save more energy than can be achieved in general by reducing lighting class. Furthermore, since a dimming schedule can be adjusted to traffic intensity, any potential risk of compromising traffic safety is minimised.

MEET US


5-6
Dec

Vision Zero for Sustainable Road Safety in the Baltic Sea Region

The conference Vision Zero for Sustainable Road Safety in the Baltic Sea Region is held i Vilnius, Lithuania. VTI is part of the organisation committé and also one of the speakers.

LATEST NEWS


2018-10-18

ADAS&ME is tackling the interaction between people and technology

ADAS&ME is a major EU project focused on automation, the human condition and the human environment. The budget is EUR 9.6 million and VTI is the coordinator.


2018-10-05

Users contribute to the development of train simulators

Apart from advanced driving simulators, VTI has developed several variations of train simulators which are used for training, education and research. In recent years, interest has increased drastically among major actors in the railway sector, and VTI has...


2018-10-03

VR study to contribute to a better working environment for bus drivers

A study where bus drivers test autonomous driving in a VR environment may contribute to a better working environment with reduced stress on the driver and safer driving.


2018-10-02

Non-native plant species spread via transport systems

Researchers at VTI have compiled a report on non-native invasive plant species in Sweden and how they spread via transport systems.


2018-09-20

EU-project VIRTUAL: improving road safety with virtual crash tests

Crash tests are used to improve safety on roads. Therefore the EU now funds a research project to develop virtual methods of crash testing. VTI coordinates the project, called VIRTUAL. The project now invites experts interested in Human Body Modeling to join...


2018-08-28

EU project protects cyclists and pedestrians

According to the World Health Organisation, more than one quarter of road traffic fatalities in 2010 were pedestrians and cyclists. Every year, about 335,000 unprotected road users die because of traffic accidents, which shows the scale of the problem. The EU...