Issues in Urban Travel Demand Modelling: ICT Implications and Trip timing choice

Download
Maria Börjesson
Staffan Algers
Kay Axhausen

Travel demand forecasting is essential for many decisions, such as infrastructure investments and policy measures. Traditionally travel demand modelling has considered trip frequency, mode, destination and route choice. This thesis considers two other choice dimensions, hypothesised to have implications for travel demand forecasting. The first part investigates how the increased possibilities to overcome space that ICT (information and communication technology) provides, can be integrated in travel demand forecasting models. We find that possibilities of modelling substitution effects are limited, irrespective of data source and modelling approach. Telecommuting explains, however, a very small part of variation in work trip frequency. It is therefore not urgent to include effects from telecommuting in travel demand forecasting. The results indicate that telecommuting is a privilege for certain groups of employees, and we therefore expect that negative attitudes from management, job suitability and lack of equipment are important obstacles. We find also that company benefits can be obtained from telecommuting. No evidences that telecommuting gives rise to urban sprawl is, however, found. Hence, there is ground for promoting telecommuting from a societal, individual and company perspective.

The second part develops a departure time choice model in a mixed logit framework. This model explains how travellers trade-off travel time, travel time variability, monetary and scheduling costs, when choosing departure time. We explicitly account for correlation in unobserved heterogeneity over repeated SP choices, which was fundamental for accurate estimation of the substitution pattern. Temporal constraints at destination are found to mainly restrict late arrival. Constraints at origin mainly restrict early departure. Sensitivity to travel time uncertainty depends on trip type and intended arrival time. Given appropriate input data and a calibrated dynamic assignment model, the model can be applied to forecast peak-spreading effects in congested networks. Combined stated preference (SP) and revealed preference (RP) data is used, which has provided an opportunity to compare observed and stated behaviour. Such analysis has previously not been carried out and indicates that there are systematic differences in RP and SP data.

LATEST NEWS


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


2017-11-30

New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


2017-11-30

Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...