High speed control of long combination heavy commercial vehicles within safe corridors

Peter Nilsson
Leo Laine

The main scope of the project was to initiate a technical framework for studying manual and automated high-speed driving of long vehicle combinations (LVCs) in a driving simulator environment.

The project included implementation and evaluation of vehicle models representing a rigid truck solo (reference vehicle) and an A-double LVC in VTI driving simulator IV (Sim IV). The A-double combination consisted of a 6x4 tractor unit followed by a three-axle semi-trailer, two-axle converter dolly and a second three-axle semi-trailer unit. The total vehicle length of the A-double was 32 metres and the total weight was set to 80 tonnes. The implementation of the vehicle models was evaluated by drivers from Volvo product development. The evaluation was carried out during normal driving conditions, with speeds ranging from 0 to 90 km/h.

Besides the implementation and evaluation of vehicle models, the project also included a driving simulator study in which manual and automated driving of the A-double have been studied. The participants in the study were 12 professional truck drivers from a haulage contractor and 8 drivers from Volvo product development. The driving scenario consisted of a relatively curvy and hilly single-lane Swedish county road (Road 180), without additional road users and safety critical events. Two automated driving strategies for steering, propulsion and braking were formulated, whereof one of the steering strategies included results from an optimal control based receding horizon approach. The drivers’ manual lane keeping and speed profiles were recorded for post-analysis. In addition, the drivers’ subjective acceptance of automated driving trajectories was also collected.



ERPUG 2017

The five year anniversary of  European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017. 



Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017. 


Crash testing bicycles at VTI

For the first time single bicycle crashes have been simulated at the VTI crash safety laboratory.


A case study exploring firefighters’ and municipal officials’ preparedness for electrical vehicles

A VTI-study presents a social perspective on new vehicle technology. It explores the self-reported preparedness of the fire departments (i.e., rescue services) in Sweden’s three largest cities regarding rescue operations involving electrical vehicles (EVs).


Pioneering research on and about bicycles at VTI

Under what circumstances might cyclists lose tyre grip? What actions could then be taken to prevent a crash? VTI is currently developing a theoretical model of the behaviour of bicycle tyres during braking and steering in different situations and on different...


Virtual pedestrians create efficient stations

If more people are to choose sustainable travel, then the public transport stations of the future must be designed so that pedestrians can get where they are going quickly, without congestion or queues. The Swedish Road and Transport Research Institute (VTI)...