Evaluation of a sleepiness warning system: a test truck study

Download
Magnus Hjälmdahl

Sleep related crashes have received increasing attention over the past decade. Driver support systems that are able to detect sleepiness and warn the driver could be a potential countermeasure to reduce sleepiness related crashes. The aim of this study was to evaluate a warning system in an experimental investigation performed in a real time car driving application. An additional aim was also to examine the suitability of using an experimental vehicle at test track for evaluation of a sleepiness warning system. The modalities used for warning was a combination of sound, vibrations in belt and spoken messages. In addition a hand worn confirmation button was used. In total 40 participants drove at a closed test track during night (00h-05h). They were instructed to sleep between 01.00 and 07.00 for two nights prior to the night of the experiment. The design of the study was a between group, with 10 participants in each group. The four different groups experienced one of the following: A: No warning - baseline; B: SENSATION warning system with an early trigger; C: SENSATION warning system with a late trigger; D: Feedback (DMS - Siemens) and warning with a late trigger. The trigger of the warnings was based on observer registrations of the driver and driver behaviour. The drivers were instructed to drive a distance of 110 kilometres. The car was a Volvo 850, equipped with sensors in order to measure driving behaviour (lateral position, speed, steering wheel angle). As sleepiness indicators blink duration was used (mean and sd), measured with EOG. After the drive the participants answered a questionnaire. The experiment focused on comprehension, usability, effectiveness, and acceptance.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...