Estimation of Volume Delay Functions for Urban Environments Based on an Analytical Intersection Model

Clas Rydergren
Pontus Matstoms

This paper describes a method for estimating parameters in volume delay functions. The volume delay function is a central part of static traffic assignment models and describes how the travel time on road link changes with traffic demand. The proposed estimation method is based on that the volume delay function is divided into two parts, one part describing the link travel time and delay and one part describing the intersection delay. The parameters for the link and intersection parts are estimated separately. Collecting data for the link part is seldom a problem. However, earlier experiences have shown that it is both difficult and expensive to collect data on intersection delay. We have used an approach in which the intersection delay data is taken from a model for calculating intersection delay, in this case the analytical intersection model CAPCAL. The developed estimation method has been exemplified on one road type and road environment. A sensitivity analysis has been conducted in order to investigate how large influence that the different assumptions on the road factors have on the volume delay function. The conclusions are that the flow levels on the cross road, the intersection density, the share of straight forward traffic, and the share of different intersection types has the largest influence, and thus should be prioritized when collecting road type data. 

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...