Estimation of the inertial parameters of vehicles with electric propulsion

Publisher's full text
Anton Albinsson
Pierre Pettersson
Mats Jonasson
Bengt Jacobson

More accurate information about the basic vehicle parameters can improve the dynamic control functions of a vehicle. Methods for online estimation of the mass, the rolling resistance, the aerodynamic drag coefficient, the yaw inertia and the longitudinal position of the centre of gravity of an electric hybrid vehicle is therefore proposed. The estimators use the standard vehicle sensor set and the estimate of the electric motor torque. No additional sensors are hence required and no assumptions are made regarding the tyre or the vehicle characteristics. Consequently, all information about the vehicle is available to the estimator.

The estimators are evaluated using both simulations and experiments. Estimations of the mass, the rolling resistance and the aerodynamic drag coefficient are based on a recursive least-squares method with multiple forgetting factors. The mass estimate converged to within 3% of the measured vehicle mass for the test cases with sufficient excitation that were evaluated. Two methods to estimate the longitudinal position of the centre of gravity and the yaw inertia are also proposed. The first method is based on the equations of motion and was found to be sensitive to the measurement and parameter errors. The second method is based on the estimated mass and seat-belt indicators.

This estimator is more robust and reduces the estimation error in comparison with that obtained by assuming static parameters. The results show that the proposed method improves the estimations of the inertial parameters. Hence, it enables online non-linear tyre force estimators and tyre-model-based tyre–road friction estimators to be used in production vehicles.

LATEST NEWS


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


2017-11-30

New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


2017-11-30

Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...