Estimating Traffic System Wide Impacts of Driver Assistance Systems Using Traffic Simulation

Download

There is a need to estimate impacts of proposed driver assistance systems already at early stages of the system development process. Estimations of the impacts of new technologies have to be based on laboratory studies and modelling. This paper presents a traffic simulation based framework for estimation of the traffic system wide impacts of driver assistance systems. The framework includes a two-step methodology. In the first step of the analysis, the considered driver assistance system’s impact on driver behaviour is observed. The second step of the analysis consist of traffic simulation modelling taking into account the system functionality as well as the observed driver behaviour of the considered driver assistance system. Driver behaviour studies for use of the data for traffic simulation modelling is discussed and traffic simulation modelling of different types of driver assistance systems is exemplified by modelling of an overtaking assistant, of in-vehicle virtual rumble strips and of adaptive cruise control.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...