Estimating the relative cost of track damage mechanisms: combining economic and engineering approaches

Publisher's full text
Andrew Smith
Simon Iwnicki
Aniruddha Kaushal
Phill Wheat

This paper proposes a new, two-stage methodology to estimate the relative marginal cost of different types of vehicles running on the rail infrastructure. This information is important particularly where the infrastructure managers wish to differentiate the track access charges by vehicle type for the purpose of incentivizing the development and use of more track-friendly vehicles.

EU legislation requires that the European infrastructure managers set the access charges based on the incremental (marginal) cost of the running trains on their networks. The novelty of the approach derives from the combination of: (1) engineering simulation methods that estimate the track damage caused by the rail vehicles; and (2) econometric methods that estimate the relationship between the actual maintenance costs and the different damage mechanisms. This two-stage approach fills an important gap in the literature, given the limitations of the existing single-stage engineering or econometric approaches in obtaining the relative marginal costs for different types of damage.

The authors demonstrate the feasibility of the method using 45 track sections from Sweden, for which the data on maintenance costs are available together with relevant track and vehicle data for 2012 (supplied by the Swedish Transport Administration). The authors demonstrate the feasibility of producing summary, section-level damage measures for the three damage mechanisms (wear, rolling contact fatigue, and track settlement), which can be taken forward to the second stage. The econometric results of the second stage indicate that it is possible to obtain sensible relationships between cost and the different damage types, and thus produce relative marginal costs by the damage mechanism and in turn the vehicle type. Based on this feasibility study, tracksettlement has been found to be the most expensive (in terms of maintenance cost) of the three mechanisms, followed by the rolling contact fatigue and then the wear. Future applications should focus on larger datasets in order to produce the required degree of precision on the estimation of the marginal cost.

LATEST NEWS


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


2017-11-30

New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


2017-11-30

Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...