Energy use due to traffic and pavement maintenance: the cost effectiveness of reducing rolling resistance

Robert Karlsson

There is a potential to reduce energy use of traffic by performing maintenance measures that lower the rolling resistance. However, the overall aim should be to decrease the total energy use in a life cycle perspective, including energy for both traffic and maintenance. When choosing maintenance alternative, it is also of importance to consider the costs involved. Pavement management is focused on keeping wide spread road networks in acceptable condition given certain budget constraints. Therefore, the economic constraints need to be addressed and in the case of choosing a maintenance alternative that reduces total energy, it also has to be cost-efficient in order for it to be performed. The main scope of the research presented in this report is to investigate how road management should act to reduce total energy use of roads, including traffic and maintenance induced energy use, while also taking cost efficiency and the aspect of uncertainty into consideration. The purpose is to enable a better consideration of the total energy used and maintenance cost when managing the road network. The objective is to derive a meaningful instrument for decision making situations such as when selecting and designing maintenance treatments, in which total energy use and maintenance cost is considered. A general method is developed and presented. A criterion, CR, has been identified for how to choose a pavement maintenance strategy in regards to cost and energy efficiency. A cost benefit analysis approach using Benefit to Cost Ratio, BCR, has been adopted. The study indicates that it is difficult to establish a simple rule of thumb. However, the CR-value may be a useful criterion in some circumstances and it is important to have guidelines as decision support where assessments are made of the road surface characteristics, total energy use and maintenance cost and where the different aspects are valued. This is especially important on an object level.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...