Ekonomisk och energieffektiv användning av motorvärmare: utvärdering av effekten på bränsleförbrukning vid värmning av smörjolja jämfört med värmning av kylvatten

Ulf Hammarström

Test results show that the cold-start effect with increased fuel consumption is reduced most by heating the cooling water, compared to heating the lubricating oil. Starting an engine when it is cold gives rise to higher fuel consumption and emissions as a cold engine means that a larger friction needs to be overcome and that the combustion is not optimal. To warm the engine in beforehand leads to lesser cold start effect. Traditionally, engine heating has been made by heating the cooling water, which in turn heats the engine block. The purpose of this study was to examine whether it would be more energy efficient to heat the lubricating oil instead of the cooling water. The hypothesis was that a warmer lubricating oil leads to less friction in the engine, which in itself would mean that less fuel to overcome the frictional resistance is needed. Likely, there may be differences in the usefulness of engine heater between cars with gearbox integrated with motor and without such integration. The results of the tests show that the cold-start effect with increased fuel consumption is reduced most by heating the cooling water. The warmer the cooling water is at engine start, the less fuel consumption by the engine start. When the total energy needs for cold starts is calculated, i.e. fuel consumption plus electric use due to engine heating, the results are not as clear regarding which option is the most energy efficient. The reduced fuel consumption as result of pre-heating is overcome by the electricity consumption needed for the actual motor heating. One advantage is that the local emissions will decrease. Since the Swedish electricity production to a large extent is based on emission free production technology, it is most likely that the total emissions are reduced.



Open seminar with Mistra SAMS international scientific advisory...

Mistra SAMS international scientific advisory panel (ISAP) is visiting Stockholm, and the program will host an open seminar where the panel members will give talks in their area of expertise.

ERPUG 2017

The five year anniversary of  European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017. 



Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017. 


Crash testing bicycles at VTI

For the first time single bicycle crashes have been simulated at the VTI crash safety laboratory.


A case study exploring firefighters’ and municipal officials’ preparedness for electrical vehicles

A VTI-study presents a social perspective on new vehicle technology. It explores the self-reported preparedness of the fire departments (i.e., rescue services) in Sweden’s three largest cities regarding rescue operations involving electrical vehicles (EVs).


Pioneering research on and about bicycles at VTI

Under what circumstances might cyclists lose tyre grip? What actions could then be taken to prevent a crash? VTI is currently developing a theoretical model of the behaviour of bicycle tyres during braking and steering in different situations and on different...


Virtual pedestrians create efficient stations

If more people are to choose sustainable travel, then the public transport stations of the future must be designed so that pedestrians can get where they are going quickly, without congestion or queues. The Swedish Road and Transport Research Institute (VTI)...