Effektiva omkörningsfält på 2+1-vägar: trafiksimuleringar av olika utformningsalternativ ur ett framkomlighetsperspektiv


The traffic performance at oncoming lane separated highways with alternating dedicated overtaking lanes (so called 2+1 roads), is dependent on the share of two lane segments (also known as the share of overtaking length). In order to maximize utilization and traffic performance, the configuration of the overtaking lanes should be designed to avoid congestion and delays. Short overtaking lanes implies limited time of queue discharge, but gives frequently recurring possibilities to overtake. Increased lengths of overtaking lanes imply the possibility to overtake several vehicles per overtaking lane, but increases the risk of catching up slower vehicles since the configuration also results in increased lengths of one lane segments.

This report presents a traffic simulation study of how different configurations affects the throughput at 2+1 roads. The results indicate that overtaking lanes between 1 050 and 1 400 meters result in shortest travel time. However, the differences are small (~0.4 seconds/km) and not statistically significant. Thus, the benefit of optimizing the configuration in terms of throughput could be questioned. Based on the results, it becomes reasonable to question the concept of designing 2+1 roads with long overtaking lengths (which corresponds to the recommendations from the Swedish Transport Administration (Trafikverket)). The major risk of catching up a slower vehicle at the one lane segments obviously affects the travel time.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...