Effects of longer trucks and freight trains in an international corridor between Sweden and Germany

Download

The effects of enabling use of longer road vehicle combinations and/or longer trains in an intermodal freight corridor that extends from central Sweden to the Ruhr area in Germany are studied. For the time being the transports are designed based on the smallest vehicle dimensions: 18.75 m for trucks in Germany (compared to 25.25 m in Sweden and Denmark) 650 m for trains in Sweden (compared to at least 750 m in Denmark and Germany). The question is whether/or how the transport system can be enhanced by using longer vehicles for road transports, rail transports or both.

Ten scenarios are simulated with the help of the national freight model Samgods. The Road 1 scenario allows 25.25 m long trucks in the road corridor (including a ferry link via Travemünde) and assumes that the longer trucks can access the road corridor in Germany via terminals. In Rail 1 scenario it is assumed that 750 m long freight trains can be operated in the rail corridor that goes via the Öresund Bridge and Jutland/Denmark. In the Road 1 + Rail 1 scenario it is assumed that both longer trucks and longer trains can be used in the corridor. The effects on the freight flows (tonnes), tonne kilometres, logistics costs and CO2 emissions inside and outside Sweden are studied. The Road 2 scenario assumes that 25.25 m long trucks can access the road corridor in Germany via terminals and direct.

As expected, the rail tonne kilometres are reduced when longer trucks are allowed in the corridor and vice versa. The road ferry transports increase when it is possible to use long trucks, the total sea transports are however affected very marginally. The competition between rail and sea becomes clear when the trains are extended to 750 m in Rail 1 scenario (1000 m in Rail 2 scenario and 1500 m in Rail 3 scenario). , the exploitation of economies of scale for trucks and/or trains leads to reduced logistics costs. The benefits resulting from reduced CO2 emissions are estimated to be below one per cent of the benefits due to reduced logistics costs. In Road 1 scenario the decrease of the CO2 emissions due to the fact that the transports are carried out with larger road vehicles, is smaller than the increase of the emissions due to the transfer of goods transports from rail to road. The CO2 emissions from sea transports are expected to decline in all scenarios.

In the Rail 1 scenario benefits of about SEK 0.155 billion per year are calculated due to the reduction of the logistics costs and CO2 emissions. The infrastructure holder estimates that SEK 0.2 to 1.0 billion are required to upgrade meeting and bypass tracks to be able to operate 750 m long trains on the route between central Sweden and the Danish boarder. This means that the investments would be repaid after a time period estimated to be somewhere in the range of one to five years. Our rough calculations in the Road 1 + Rail 1 scenario indicate that the profitability of rail investments does not decrease if longer trucks and longer trains are simultaneously used in the corridor. Our calculations indicate the need for in-depth analyses of the missing cost-benefit components. On the cost side there are additional costs when heavier trains than today are used.

The Road 1 scenario, that does not require infrastructure investments in Sweden, is expected to lead to cost savings due to reduced logistics costs and CO2 emissions of about SEK 64 million per year. As for rail it needs to be clarified how different weight restrictions in the corridor affect the social benefits and costs. Thorough investigations should also include a detailed analysis of the sea transports that are complementary or competitive to the land transports.

MEET US


13-14
Jun

The 6st Humanist Conference

The 6th HUMANIST Conference will take place 13-14 June 2018 in the Hague, The Netherlands. The scope of the conference covers a wide range of topics on Human Factors in Transport. Tania Willstrand and Alexander Eriksson will present their research results.

LATEST NEWS


2018-04-17

VTI will develop simulators for ambulance staff

VTI has initiated a pilot study for paramedics with the Centre for Teaching & Research in Disaster Medicine and Traumatology and Linköping University. The aim is to give ambulance staff the opportunity to practice critical medical tasks in a moving vehicle in...


2018-04-12

Unique electrified road opens in Sweden

The world’s first electrified road recharging the batteries of cars and trucks while driving opened in Sweden. The Swedish Minister for Infrastructure, Tomas Eneroth, was at the formal inauguration of the electrified road on April 11, 2018. VTI is one of 22...


2018-04-11

Swedish road safety spreads internationally

Sweden is a leading country in terms of road safety, and the research conducted by the Swedish National Road and Transport Research Institute (VTI) has contributed to increased safety. VTI’s remit includes disseminating research results and keeping up to date...


2018-04-06

A greater understanding of cyclists' behaviour

Cyclists are often accused of not following traffic rules and being hooligans on the road. New research shows that there is no support for this perception. "Our observations reveal no such general anarchy" says Sonja Forward, researcher at VTI.


2018-03-28

New technology for road surface measurement tested

VTI has tested a new scanning-laser technology for road surface measurement. The tests show the new technology for comprehensive transverse-profile measurement provides dependable values in measuring transverse profile and rut depth.


2018-03-15

Ulf Sandberg has been presented with the TTI Lifetime Achievement Award 2018

VTI’s Senior Research Leader Ulf Sandberg has been presented with the TTI Lifetime Achievement Award 2018 for his work on research into tyres and road surface.