Effects of hearing loss on traffic safety and mobility

Björn Lyxell
Björn Lidestam
Håkan Alm

The aim of this PhD thesis was to investigate traffic safety and mobility for individuals with hearing loss (HL). Three studies were conducted: 1. a questionnaire survey aimed to evaluate differences in choice of transportation that might be related to HL, 2. a driving simulator study that looked into compensatory strategies and evaluated the efficiency of a tactile signal to alert the driver, and 3. a field study to evaluate these effects in real traffic and to evaluate a navigation system with a supportive tactile signal. The effects of HL discovered in this thesis add to the knowledge and understanding of the influence of HL on traffic safety and mobility. Differences found consistently point to a generally more cautious behavior. Compensatory and coping strategies associated with HL are bound to driving complexity and appear when complexity increases. These strategies include driving at lower speeds, using a more comprehensive visual search behavior and being less engaged in distracting activities. Evaluation of a tactile signal showed that by adding a tactile modality, some driver assistance systems can also be made accessible to drivers with HL. At the same time, the systems might be more effective for all users, since the driver can be more focused on the road. Based on the results in this thesis, drivers with HL cannot be considered an increased traffic safety risk, and there should be no need for adjustments of the requirements of hearing for a license to drive a car.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...