Dynamic responses of female and male volunteers in rear impacts

Publisher's full text
Anna Carlsson
Mats Y Svensson
Gunter P. Siegmund

Objectives: Whiplash injuries from vehicle collisions are common and costly. These injuries most frequently occur as a result of a rear impact and, compared to males, females have up to twice the risk of whiplash-associated disorders (WAD) resulting from vehicle crashes. The present study focuses on the differences in the dynamic response corridors of males and females in low-severity rear impacts.

Methods: In this study, analysis of data from volunteer tests of females from previously published data has been performed. Corridors for the average female response were generated based on 12 volunteers exposed to a change of velocity of 4 km/h and 9 volunteers exposed to a change of velocity of 8 km/h. These corridors were compared to corridors for the average male response that were previously generated based on 11 male volunteers exposed to the same test conditions.

Results: Comparison between the male and female data showed that the maximum x-acceleration of the head for the females occurred on average 10 ms earlier and was 29% higher during the 4 km/h test and 12 ms earlier and 9% higher during the 8 km/h test. Head-to-head restraint contact for the females occurred 14 ms earlier at 4 km/h and 11 ms earlier at 8 km/h compared to the males. For the same initial head-to-head restraint distance, head restraint contact occurred 11 and 7 ms earlier for the females than the males at 4 and 8 km/h, respectively. Furthermore, the calculated Neck Injury Criteria (NIC) values were similar for males and females at 4 km/h, whereas they were lower for females compared to the males at 8 km/h (3.2 and 4.0 m2/s2, respectively).

Conclusions: The results of this study highlight the need to further investigate the differences in dynamic responses between males and females at low-severity impacts. Such data are fundamental for the development of future computer models and dummies for crash safety assessment. These models can be used not only as a tool in the design and development process of protective systems but also in the process of further evaluation and development of injury criteria. Copyright © 2008 Taylor & Francis Group, LLC.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...