Dynamic kinematic responses of female volunteers in rear impacts and comparison to previous male volunteer tests

Publisher's full text
Anna Carlsson
Johan Davidsson
Wolfram Hell
Sylvia Schick
Mats Y. Svensson

Objectives: The objective was to quantify dynamic responses of 50th percentile females in rear impacts and compare to those from similar tests with males. The results will serve as a basis for future work with models, criteria, and safety systems.

Methods: A rear impact sled test series with 8 female volunteers was performed at velocity changes of 5 and 7 km/h. The following dynamic response corridors were generated for the head, T1 (first thoracic vertebra) and head relative to T1: (1) accelerations in posterior-anterior direction, (2) horizontal and vertical displacements, (3) angular displacements for 6 females close to the 50th percentile in size. Additionally, the head-to-head restraint distance and contact time and neck injury criterion (NIC) were extracted from the data set. These data were compared to results from previously performed male volunteer tests, representing the 50th percentile male, in equivalent test conditions. T-tests were performed with the statistical significance level of.05 to quantify the significance of the parameter value differences for the males and females.

Results: At 7 km/h, the females showed 29 percent earlier head-to-head restraint contact time (p =.0072); 27 percent shorter horizontal rearward head displacement (p =.0017); 36 percent narrower head extension angle (p =.0281); and 52 percent lower NIC value (p =.0239) than the males in previous tests. This was mainly due to 35 percent shorter initial head-to-head restraint distance for the females (p =.0125). The peak head acceleration in the posterior-anterior direction was higher and occurred earlier for the females.

Conclusions: The overall result indicated differences in the dynamic response for the female and male volunteers. The results could be used in developing and evaluating a mechanical and/or mathematical average-sized female dummy model for rear impact safety assessment. These models can be used as a tool in the design of protective systems and for further development and evaluation of injury criteria. © 2011 Taylor & Francis Group, LLC.

MEET US


5-6
Dec

Vision Zero for Sustainable Road Safety in the Baltic Sea Region

The conference Vision Zero for Sustainable Road Safety in the Baltic Sea Region is held i Vilnius, Lithuania. VTI is part of the organisation committé and also one of the speakers.

LATEST NEWS


2018-10-05

Users contribute to the development of train simulators

Apart from advanced driving simulators, VTI has developed several variations of train simulators which are used for training, education and research. In recent years, interest has increased drastically among major actors in the railway sector, and VTI has...


2018-10-03

VR study to contribute to a better working environment for bus drivers

A study where bus drivers test autonomous driving in a VR environment may contribute to a better working environment with reduced stress on the driver and safer driving.


2018-10-02

Non-native plant species spread via transport systems

Researchers at VTI have compiled a report on non-native invasive plant species in Sweden and how they spread via transport systems.


2018-09-20

EU-project VIRTUAL: improving road safety with virtual crash tests

Crash tests are used to improve safety on roads. Therefore the EU now funds a research project to develop virtual methods of crash testing. VTI coordinates the project, called VIRTUAL. The project now invites experts interested in Human Body Modeling to join...


2018-08-28

EU project protects cyclists and pedestrians

According to the World Health Organisation, more than one quarter of road traffic fatalities in 2010 were pedestrians and cyclists. Every year, about 335,000 unprotected road users die because of traffic accidents, which shows the scale of the problem. The EU...


2018-08-21

Swedish organisations in EU project on traffic safety and crash testing

Crash safety testing is one of the tools used to improve safety on roads. The EU is therefore funding a research project that started recently to develop virtual methods of crash testing. The long-term goal is to supplement the physical evaluation of crash...