Dynamic kinematic responses of female volunteers in rear impacts and comparison to previous male volunteer tests

Publisher's full text
Anna Carlsson
Johan Davidsson
Wolfram Hell
Sylvia Schick
Mats Y. Svensson

Objectives: The objective was to quantify dynamic responses of 50th percentile females in rear impacts and compare to those from similar tests with males. The results will serve as a basis for future work with models, criteria, and safety systems.

Methods: A rear impact sled test series with 8 female volunteers was performed at velocity changes of 5 and 7 km/h. The following dynamic response corridors were generated for the head, T1 (first thoracic vertebra) and head relative to T1: (1) accelerations in posterior-anterior direction, (2) horizontal and vertical displacements, (3) angular displacements for 6 females close to the 50th percentile in size. Additionally, the head-to-head restraint distance and contact time and neck injury criterion (NIC) were extracted from the data set. These data were compared to results from previously performed male volunteer tests, representing the 50th percentile male, in equivalent test conditions. T-tests were performed with the statistical significance level of.05 to quantify the significance of the parameter value differences for the males and females.

Results: At 7 km/h, the females showed 29 percent earlier head-to-head restraint contact time (p =.0072); 27 percent shorter horizontal rearward head displacement (p =.0017); 36 percent narrower head extension angle (p =.0281); and 52 percent lower NIC value (p =.0239) than the males in previous tests. This was mainly due to 35 percent shorter initial head-to-head restraint distance for the females (p =.0125). The peak head acceleration in the posterior-anterior direction was higher and occurred earlier for the females.

Conclusions: The overall result indicated differences in the dynamic response for the female and male volunteers. The results could be used in developing and evaluating a mechanical and/or mathematical average-sized female dummy model for rear impact safety assessment. These models can be used as a tool in the design of protective systems and for further development and evaluation of injury criteria. © 2011 Taylor & Francis Group, LLC.

LATEST NEWS


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


2017-11-30

New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


2017-11-30

Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...