Driver performance in the presence of adaptive cruise control related failures: implications for safety analysis and fault tolerance

Publisher's full text
Josef Nilsson
Paolo Falcone
Jonny Vinter

This study explored how failures related to an adaptive cruise control (ACC) were handled by drivers and what the effects on safety can be. The experimental study included forty-eight subjects and was performed in a moving base driving simulator equipped with an ACC. Each subject experienced two different failures in separate scenarios. In total, the study included four different failures, i.e., Unwanted acceleration, Complete lack of deceleration, Partial lack of deceleration, and Speed limit violation. The outcome of each failure scenario has been categorized based on whether the driver managed to avoid a collision or not. For the outcomes where collisions were successfully avoided, the situations were analyzed in more detail and classified according to the strategy used by the driver. Besides showing that partial lack of deceleration caused more collisions than complete lack of deceleration (43% compared to 14% of the participants colliding), the results also indicate a preference among drivers to steer and change lane rather than to apply the brakes when faced with acceleration and deceleration failures. A trade off relationship was identified between allowing a failing ACC to stay operational and on the other hand disabling it when an error is detected. Keeping the system operational can cause confusion about the mode of the system but as the results of the study indicate it can also improve the situation by reducing impact speed.

LATEST NEWS


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


2017-11-30

New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


2017-11-30

Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...