Driver behaviour and driver experience of partial and fully automated truck platooning: a simulator study

Download
Magnus Hjälmdahl
Stas Krupenia

This paper builds our knowledge of truck driver behaviour in and experience of automated truck platooning, focusing on the effect of partially and fully automated truck platoons on driver workload, trust, acceptance, performance, and sleepiness.

Twenty-four male drivers experienced three conditions in a truck driving simulator, i.e., baseline, partial automation, and full automation: the baseline condition was driving with standard cruise control; partial automation was automated longitudinal control ten metres behind the truck in front, with the driver having to steer; and full automation was automated longitudinal and lateral control. Each condition was simulated in three situations: light traffic, heavy traffic, and heavy traffic plus fog.

The experiment demonstrated that automation affects workload. For all workload measures, partial automation produced higher workload than did the full-automation or baseline condition. The two measures capturing trust were consistent and indicated that trust was highest under the baseline condition, with little difference between partial and full automation. Driver acceptance of both levels of automation was lower than acceptance of baseline. Drivers rated their situation awareness higher for both partial and full automation than for baseline, although both levels of automation led to higher sleepiness.

The challenge when implementing truck platooning is to develop a system, including human–machine interaction (HMI), that does not overburden the driver, properly addresses driver sleepiness, and satisfies current legislation. The system also must be trusted and accepted by drivers. To achieve this, the development of well-designed HMI will be crucial.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...