Design and validation of the neck for a rear impact dummy (BioRID I)

Publisher's full text
Mats Y. Svensson
Johan Davidsson
Anders Flogård
Per Lövsund
Yngve Håland
Lotta Jakobsson
Kristina Wiklund

To assess the protective performance of seats and head restraints, occupant models able to mimic the motion of a human in a crash are needed. Hence, a new mechanical dummy neck for low-velocity rear collision tests was developed. The dummy neck consists of seven cervical elements connected by pin joints. The stiffness properties of the neck were represented by rubber blocks mounted between each pair of vertebrae, as well as by muscle substitutes between the head and the first thoracic vertebra (T1). The muscle substitutes consist of cables connected to a unit containing springs and a damper. The neck was validated against volunteer test data (Δv of 7 km/h) and compared with the kinematics of the Hybrid III dummy. The new neck was tested as a part of a new dummy (BioRID) that produced a human-like motion of the T1. The kinematics of the new neck was within the corridor of the volunteers, during the major part of the first 250 ms of the crash event, for both displacement of the head relative to T1 and for the acceleration of the head. This applies to both duration and peak values. When compared with the new neck, the Hybrid III showed an earlier decrease of the horizontal acceleration of the head, less maximum horizontal displacement, and an earlier increase of the rearward angular displacement of the head relative to T1.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...