Description of unified model of driver behaviour (UMD) and definition of key parameters for specific application to different surface transport domains of application

Download
David (ed) Shinar
Ilit Oppenheim
Simon Enjalbert
Rudy Dahyot
Marianne Pichon
Abel Ouedraogo
Margareta Lützhöft
Oliver Carsten
Magnus Hjälmdahl
Carlo Cacciabue

The first work package (WP1) contains a critical review and synthesis of human behaviour models ofdrivers of road vehicles, trains and maritime vessels (ships). Based on this review a reference modelof Driver–Vehicle–Environment is developed. A variety of approaches to modeling driver behaviourare possible as options. The literature review covers the more widely cited of these. Generally, thesemight be categorized as either 'Descriptive' models which can only describe the driving task in termsof what the driver has to do or 'Functional' models which are able to explain and predict drivers'performance in demanding situations and drivers' behaviour in typical ones. It seems that theoptimal approach might be a hybrid of several types of models. In recent years, a variety of driversupport and information management systems have been designed and implemented with theobjective of improving safety as well as performance of vehicles. While the crucial issues at atechnical level have been mostly solved, their consequences for driver behaviour remain to be fullyexplained. To reach this goal predictive models of the interaction of the driver with the vehicle andthe environment are necessary. The aim of the European Project AIDE was to integrate all in vehiclesupport and information systems in a harmonized user interface (Saad, 2006). The ITERATE projectwill take this further by developing it into a unified driver model that is also applicable to othertransport domains.The first deliverable in this work package (D1.1) presented a critical review of Driver-Vehicle-Environment (DVE) models and most relevant drivers' parameters and variables to be implementedin such models, in different surface transport modes and in different safety critical situations. Theaim of this deliverable (D1.2), succeeding D1.1 is to describe and detail the Unified Model of Driverbehaviour (UMD), define the environmental parameters to be implemented and their relationshipswith the driver variables. The proposed model will be used to support design and safety assessmentof innovative technologies and make it possible to adapt these technologies to the abilities, needs,driving style and capacity of the individual drivers. The model will also present the environmentalparameters, different road and traffic scenarios with different weather and visibility conditions to besimulated in the test phases. The scenarios of traffic that are independent of the activities carried outby the vehicle and driver will be simulated. The model is simplified in the sense that traffic conditions(density, complexity) are not sensitive to the 'test' driver and vehicle behaviour, but remain fixed in agiven trial. Thus, within the constraints of this pioneering effort, only the behaviour of the test driveris variable, while the environment and vehicle are defined as parameters with fixed values.

MEET US


19-20
Oct

ERPUG 2017

The five year anniversary of  European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017. 
7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


2017-06-29

Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017.