Cooperative Variable Speed Limit Systems: Modeling and Evaluation using Microscopic Traffic Simulation

Download
Jan Lundgren
Wilco Burghout

During the last decades the road traffic has increased tremendously leading to congestion, safety issues and increased environmental impacts. As a result, many countries are continuously trying to find improvements and new solutions to solve these issues. One way of improving the traffic conditions is by the use of so called intelligent transport systems, where information and communication technologies are being used for traffic management and control. One such system commonly used for traffic management purposes are variable speed limit systems. These systems are making use of signs to show speed limits adjusted to the prevailing road or traffic conditions. The rapid development in telecommunication technologies has enabled communication between vehicles, and between vehicles and the infrastructure, so called cooperative systems. This opens up for  the possibility to further improve the performance of a standard variable speed limit system by adding cooperative system features.

The overall aim of this thesis is to investigate the potential benefits of incorporating infrastructure to vehicle communication and autonomous control to an existing variable speed limit system. We show how such a cooperative variable speed limit system can be modeled and evaluated by the use of microscopic traffic simulation. Results from the evaluation indicate increased flow harmonization in terms of narrowing of the acceleration rate distribution and reduced exhaust emissions.

Further, we compare four control algorithms for deciding on speed limits in variable speed limit systems. Differences in the resulting traffic performance between the control algorithms are quantified by the use of microscopic traffic simulation. It is concluded that the dened objective for the algorithms have a decisive influence on the effects of the variable speed limit system.

The results from this thesis are useful for further development of variable speed limit systems, both with respect to incorporating cooperative features and by improving the speed setting control algorithms.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...