Characterisation of permanent deformation of silty sand subgrades from multistage RLT tests

Publisher's full text
Farhad Salour

In thin flexible pavements, unbound aggregate layers and subgrade, contribute largely to the rut formation of the pavement system. Therefore, realistic prediction of surface rutting requires models that can reliably capture the cumulative plastic deformation of pavement unbound materials under repeated loads. Here four models were evaluated to capture the accumulation of permanent deformation of two fine grained subgrade materials.

The models were modified based on the time hardening concept allowing them to be used in a multistage repeated load triaxial (RLT) test procedure, in which a single specimen is exposed to a series of consecutive stress paths of varying magnitudes. The RLT tests were conducted on two non-plastic silty sand subgrade soils with different fines content and at four different moisture contents. The used triaxial testing system was capable of controlling the pore-air and pore-water pressures of the specimen and therefore the permanent deformation tests were carried out with controlled matric suction of the soil samples throughout the test. An effective stress approach was therefore used in the modelling. Using the test data, the model parameters were determined using a parameter optimisation algorithm and the qualities of fits achieved was analysed and compared through goodness-of-fit statistics.

In general, the four permanent deformation models were found to work satisfactorily in capturing the accumulation of the permanent deformation of the tested subgrade materials. It was concluded that the multistage RLT test procedure has the potentials to be used for characterizing the permanent deformation behaviour of subgrade soils. This can considerably reduce the effort and time required for permanent deformation characterization of subgrade materials.



Cost Benefit Analysis (CBA) workshop in Stockholm

An open seminar and workshop in Stockholm will be held on 25-26 April 2018. The workshop deals with the use of CBA as a basis for decision-making in the public sector. The workshop is organized by, among others, Professor Jan-Eric Nilsson, VTI.



Modal shift for an environmental lift?

Investigations in Sweden and other countries suggest a shift of goods transport from road to rail and waterborne transport to reach environmental and climate objectives. VTI is leading a new project to investigate how the modal shift can contribute and what...


Automation and digitalisation are making rail competitive

Road transport is developing rapidly and its productivity has increased sharply. Rail transport, however, has not developed at the same rate. Automation and digitalisation are essential if rail freight in Europe is to survive.


New research is creating a driverless logistics chain

The research project Born to Drive has come up with a system that allows new cars to move, without a driver, from the production line out to the parking area prior to being transported elsewhere. The vision is to automate the entire logistics chain from...


VTI testing automation in EU project

VTI is leading a series of tests in a major EU project on automated driving. The first driving tests were carried out n a test track in Slovenia in December. The project will focus in part on acceptance among different groups in society, in part on...


Freight transportation on road and rail analysed

Freight transport accounts for a large proportion of the emissions, noise and congestion produced by road traffic. Transporting freight in larger but fewer lorries could reduce the problem. At the same time it might entail freight being diverted from more...


Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...