Calibrating VISSIM roundabout model using a critical gap and follow-up headway approach

Download
Zhixia Li
Michael DeAmico
Madhav V. Chitturi
Andrea R Bill
David A Noyce

Roundabouts have been continuously constructed in the U.S. in recent years, as studies have shown their capability of reducing crash risk and severity when compared with signalized intersections. Despite of the safety benefits offered by roundabouts, operational efficiency is required be analyzed when considering building roundabouts. As a prevailing simulation platform for modeling roundabouts, VISSIM have been widely applied in practice to facilitate analyzing the operational performance of roundabouts. Considering that an essential prerequisite to preparing a VISSIM roundabout model is to calibrate the model by adjusting VISSIM parameters, comprehensive calibration guidance is of great importance to practitioners. Previous calibration research has conducted qualitative analysis to study the impact of VISSIM parameters on roundabout capacity. However, parameter values based on field data and quantitative calibration guidelines are more helpful to facilitate fast and accurate modeling of roundabouts. This paper addresses these important needs. Speed trajectories of free-flow entering vehicles were collected in the field using a radar sensor. Location, length, speed distribution, and deceleration rate parameters for the VISSIM Reduced Speed Areas (RSA) were determined through the analysis of the radar data. The impact of VISSIM parameters on critical gap and follow-up headway was quantitatively analyzed through sensitivity analysis of minimum gap for PR, speed distribution and deceleration rate for RSA, and additive and multiplicative settings for the Wiedemann 74 model. Numerical guidelines for calibrating VISSIM roundabout models were ultimately developed, and validated via a case study.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...