Byggnads- och underhållsmetoder för CBÖ-vägar


Pavement structures with a cement-bound granular material (CBGM) road base and an asphalt wearing course are relatively rigid and suitable for roads with heavy traffic. The road pavement type known as cement bitumen pavement (CB) is common in many European countries and was previously also widely used in Sweden, but has been used very little here in recent years. One reason for this is that many roads have had problems with reflection cracks in the asphalt due to crack formation arising in the cement-bound granular material road base (CBGM). This crack formation consists mainly of thermal cracks that continue up though the asphalt layers. Crack formation in the cement-bound layers arises at different distances, with wider cracks at a distance of 15–20 metres, and it is these that continue up through the overlying asphalt layers.

This report examines seven well known road objects that have been paved with CB and that have been trafficked for between 2 and 30 years. Because the roads have different traffic loads, the thickness of the CBGM layer has varied from 160 mm to 240 mm. Depending on when the roads were built, they have been subject to different building requirements for CB. The strength requirement for CBGM has varied from 8.5 MPa to 17 MPa. The thickness of the asphalt binder course between CBGM and the asphalt wearing course has varied from 50 mm to 115 mm and the type of binder course has varied from bitumen stabilized gravel (BSG) to various types of softer or harder asphalt types, and overlying this there has always been a 40 mm asphalt wearing course.



Vision Zero for Sustainable Road Safety in the Baltic Sea Region

The conference Vision Zero for Sustainable Road Safety in the Baltic Sea Region is held i Vilnius, Lithuania. VTI is part of the organisation committé and also one of the speakers.



ADAS&ME is tackling the interaction between people and technology

ADAS&ME is a major EU project focused on automation, the human condition and the human environment. The budget is EUR 9.6 million and VTI is the coordinator.


Users contribute to the development of train simulators

Apart from advanced driving simulators, VTI has developed several variations of train simulators which are used for training, education and research. In recent years, interest has increased drastically among major actors in the railway sector, and VTI has...


VR study to contribute to a better working environment for bus drivers

A study where bus drivers test autonomous driving in a VR environment may contribute to a better working environment with reduced stress on the driver and safer driving.


Non-native plant species spread via transport systems

Researchers at VTI have compiled a report on non-native invasive plant species in Sweden and how they spread via transport systems.


EU-project VIRTUAL: improving road safety with virtual crash tests

Crash tests are used to improve safety on roads. Therefore the EU now funds a research project to develop virtual methods of crash testing. VTI coordinates the project, called VIRTUAL. The project now invites experts interested in Human Body Modeling to join...


EU project protects cyclists and pedestrians

According to the World Health Organisation, more than one quarter of road traffic fatalities in 2010 were pedestrians and cyclists. Every year, about 335,000 unprotected road users die because of traffic accidents, which shows the scale of the problem. The EU...