A novel approach for diagnosing road safety issues using automated computer vision techniques

Tarek Sayed
Mohamed H Zaki
Jarvis Autey

The use of traffic conflicts for safety diagnosis has been gaining acceptance as a surrogate for collision data analysis. The traffic conflicts approach provided better understanding of collision contributing factors and the failure mechanism that leads to road collisions. This paper demonstrates an automated proactive safety diagnosis approach for vehicles, pedestrian and cyclists using video-based computer vision techniques. Traffic conflicts are automatically detected and several conflict indicators such as Time to collision (TTC) are calculated based on the analysis of the road-user positions in space and time. Additionally, spatial violations are detected based on the non-conformance of road users to travel regulations. Several case studies are described. The first case study deals of the safety analysis of a newly installed bike lane at the southern approach of a heavy volume Bridge in Vancouver, British Columbia. The results showed a high exposure of cyclists to traffic conflicts. Practical solutions to address the safety issues at the location were presented. The second case study deals with a major signalized intersection where concerns were raised regarding the high conflict rate between vehicles and pedestrians as well as an elevated number of traffic violations (i.e., jaywalking) at the intersection. Conflicts and violations were identified and pedestrian safety countermeasures were presented. The third case study deals with a before-after (BA) safety evaluation of a newly proposed design for channelized right-turn lanes at intersections. The new design, termed “Smart Channels”, decreases the angle of the channelized right turn to approximately 70 degrees. The results of the evaluation show that the implementation of the right-turn treatment has resulted in a considerable reduction in the severity and frequency of merging, rear-end, and total conflicts. Overall, the three case studies demonstrate the considerable potential of using video-based computer vision techniques for automated road safety analysis based on traffic conflicts.



International Conference on Electric Road Systems starts today

Electric Road Systems (ERS) is a relatively new concept with many initiatives on the way. To learn from each other and stimulate new collaborations the Swedish Research and Innovation Platform for Electric Roads arranged the first international conference...


Same survey of road users’ attitudes in 50 countries

At the Road Safety on Five Continents Conference, RS5C, one entire session presented a large survey of road users' attitudes in 38 countries. Results show large differences between countries in many areas, both regarding behavior and attitudes. A new survey...


Good results with alcohol interlock program according to Swedish study

An alcohol interlock program makes it possible for drink driving offenders to continue their everyday lives. In a Swedish study most of the participants were satisfied with the program and experienced improved health. They also reported drinking alcohol more...


Traffic safety in the spotlight

Today the Conference Road Safety on Five Continents (RS5C) opened in Jeju Island, South Korea. More than 220 participators have come from all over the world to present findings and learn about traffic safety. Dr. Young Tae Kim, Secretary-General of the...


VTI will develop simulators for ambulance staff

VTI has initiated a pilot study for paramedics with the Centre for Teaching & Research in Disaster Medicine and Traumatology and Linköping University. The aim is to give ambulance staff the opportunity to practice critical medical tasks in a moving vehicle in...


Unique electrified road opens in Sweden

The world’s first electrified road recharging the batteries of cars and trucks while driving opened in Sweden. The Swedish Minister for Infrastructure, Tomas Eneroth, was at the formal inauguration of the electrified road on April 11, 2018. VTI is one of 22...