A new mathematical neck model for a low-velocity rear-end impact dummy: Evaluation of components influencing head kinematics

Publisher's full text

A mathematical model of a new rear-end impact dummy neck was implemented using MADYMO. The main goal was to design a model with a human-like response of the first extension motion in the crash event. The new dummy neck was modelled as a series of rigid bodies (representing the seven cervical vertebrae and the uppermost thoracic element, T1) connected by pin joints, and supplemented by two muscle substitutes. The joints had non-linear stiffness characteristics and the muscle elements possessed both elastic stiffness and damping properties. The new model was compared with two neck models with the same number of vertebrae, but without muscle substitutes. The properties of the muscle substitutes and the need of these were evaluated by using three different modified neck models. The motion of T1 in the simulations was prescribed using displacement data obtained from volunteer tests. In a sensitivity analysis of the mathematical model the influence of different factors on the head-neck kinematics was evaluated. The neck model was validated against kinematics data from volunteer tests: linear displacement, angular displacement, and acceleration of the head relative to the upper torso at 7 km/h velocity change. The response of the new model was within the corridor of the volunteer tests for the main part of the time history plot. This study showed that a combination of elastic stiffness and damping in the muscle substitutes, together with a non-linear joint stiffness, resulted in a head-neck response similar to human volunteers, and superior to that of other tested neck models.



Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.




The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...


Tomas Svensson new director-general

Tomas Svensson was today appointed Director-General of VTI. Tomas has been acting Director-General since January 2017.