A model for simulation and generation of surrounding vehicles in driving simulators

Download
Jan Lundgren
Pontus Matstoms
Stéphane Espié

Driving simulators are used to conduct experiments on for example driver behavior, road design, and vehicle characteristics. The results of the experiments often depend on the traffic conditions. One example is the evaluation of cellular phones and how they affect driving behavior. It is clear that the ability to use phones when driving depends on traffic intensity and composition, and that realistic experiments in driving simulators therefore has to include surrounding traffic.

This thesis describes a model that generates and simulates surrounding vehicles for a driving simulator. The proposed model generates a traffic stream, corresponding to a given target flow and simulates realistic interactions between vehicles. The model is built on established techniques for time-driven microscopic simulation of traffic and uses an approach of only simulating the closest neighborhood of the driving simulator vehicle. In our model this closest neighborhood is divided into one inner region and two outer regions. Vehicles in the inner region are simulated according to advanced behavioral models while vehicles in the outer regions are updated according to a less time-consuming model. The presented work includes a new framework for generating and simulating vehicles within a moving area. It also includes the development of enhanced models for car-following and overtaking and a simple mesoscopic traffic model.

The developed model has been integrated and tested within the VTI Driving simulator III. A driving simulator experiment has been performed in order to check if the participants observe the behavior of the simulated vehicles as realistic or not. The results were promising but they also indicated that enhancements could be made. The model has also been validated on the number of vehicles that catches up with the driving simulator vehicle and vice versa. The agreement is good for active and passive catch-ups on rural roads and for passive catch-ups on freeways, but less good for active catch-ups on freeways.

MEET US


25-26
Apr

Cost Benefit Analysis (CBA) workshop in Stockholm

An open seminar and workshop in Stockholm will be held on 25-26 April 2018. The workshop deals with the use of CBA as a basis for decision-making in the public sector. The workshop is organized by, among others, Professor Jan-Eric Nilsson, VTI.

LATEST NEWS


2018-02-19

Modal shift for an environmental lift?

Investigations in Sweden and other countries suggest a shift of goods transport from road to rail and waterborne transport to reach environmental and climate objectives. VTI is leading a new project to investigate how the modal shift can contribute and what...


2018-02-13

Automation and digitalisation are making rail competitive

Road transport is developing rapidly and its productivity has increased sharply. Rail transport, however, has not developed at the same rate. Automation and digitalisation are essential if rail freight in Europe is to survive.


2018-02-08

New research is creating a driverless logistics chain

The research project Born to Drive has come up with a system that allows new cars to move, without a driver, from the production line out to the parking area prior to being transported elsewhere. The vision is to automate the entire logistics chain from...


2018-02-05

VTI testing automation in EU project

VTI is leading a series of tests in a major EU project on automated driving. The first driving tests were carried out n a test track in Slovenia in December. The project will focus in part on acceptance among different groups in society, in part on...


2018-02-02

Freight transportation on road and rail analysed

Freight transport accounts for a large proportion of the emissions, noise and congestion produced by road traffic. Transporting freight in larger but fewer lorries could reduce the problem. At the same time it might entail freight being diverted from more...


2017-11-30

Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...