A Model for Capacity Reduction at Roadwork Zone

Per Strömgren

This paper presents an investigation of capacity reduction in connection with roadwork. The paper presents a state-of-the-art description on roadwork effects on capacity. The state-of-the art has been used to develop a model for estimation of capacity reduction at roadwork zone on Swedish roads. The model has partly been validated with empirical data from a full scale test at the freeway network in Gothenburg.

The studies presented in the literature shows that capacity differs not only between different roadwork designs but also between roadwork with similar design. Thus, one can conclude that there is a high variation between the roadwork zone due to effects of surrounding elements, such as the type of work and external effects such as rain (which affects the capacity even under normal conditions). The differences that exist in the estimation of capacity for motorway sections next to a roadwork zone can be said to consist of four situation-specific variables:

  • the percentage of heavy vehicles
  • type of road
  • the width of the remaining lanes
  • diversion of traffic to the opposite carriageway

The conclusion from the literature review is that the most important parameters that should be incorporated in a Swedish capacity manual for the operation and maintenance of roadwork are:

  • the proportion of heavy traffic
  • lane width, type of roadwork
  • number of closed lanes
  • closed road shoulder
  • proportion of commuter traffic
  • length of roadwork zone.

The paper presents a comparison between the Dutch model for computation of capacity reduction and a composite model of reduction factors from Germany, USA and Denmark. The comparison show that the two models essentially gives the same results. Based on these results a new model was developed. In the developed model, the capacity for the remaining lane is calculated.



Vision Zero for Sustainable Road Safety in the Baltic Sea Region

The conference Vision Zero for Sustainable Road Safety in the Baltic Sea Region is held i Vilnius, Lithuania. VTI is part of the organisation committé and also one of the speakers.



ADAS&ME is tackling the interaction between people and technology

ADAS&ME is a major EU project focused on automation, the human condition and the human environment. The budget is EUR 9.6 million and VTI is the coordinator.


Users contribute to the development of train simulators

Apart from advanced driving simulators, VTI has developed several variations of train simulators which are used for training, education and research. In recent years, interest has increased drastically among major actors in the railway sector, and VTI has...


VR study to contribute to a better working environment for bus drivers

A study where bus drivers test autonomous driving in a VR environment may contribute to a better working environment with reduced stress on the driver and safer driving.


Non-native plant species spread via transport systems

Researchers at VTI have compiled a report on non-native invasive plant species in Sweden and how they spread via transport systems.


EU-project VIRTUAL: improving road safety with virtual crash tests

Crash tests are used to improve safety on roads. Therefore the EU now funds a research project to develop virtual methods of crash testing. VTI coordinates the project, called VIRTUAL. The project now invites experts interested in Human Body Modeling to join...


EU project protects cyclists and pedestrians

According to the World Health Organisation, more than one quarter of road traffic fatalities in 2010 were pedestrians and cyclists. Every year, about 335,000 unprotected road users die because of traffic accidents, which shows the scale of the problem. The EU...