A methodology to quantify pedestrian crash rates against statewide averages for roadways and intersections

Download
Hatem Abou-Senna
Essam Radwan
Ayman Mohamed

To date there are no clear or uniform standards for a method to measure pedestrian crash rates and compare it against a statewide average. In this paper, a novel methodology to measure pedestrian crash rates along roadways and intersections were quantified. The main objective is to identify critical pedestrian crash locations that are operating above its corresponding statewide average.  It was crucial to address the pedestrian-vehicular conflict as the State of Florida currently tops the list in the “Dangerous by Design” report as having the highest four pedestrian incident locations in the Country. The main challenge was to identify a practical and correct exposure measure. In most cases, the exposure measure is either unavailable or can be obtained at a greater cost. The methods and procedures explained in this paper are considered detailed, practical and provide a broad depiction of the main factors that directly contribute to pedestrian crashes. The main parameters used in calculating pedestrian crash rates along roadways included functional classification, number of lanes, area type, AADT and the total length of the roadway category. Conversely, main parameters for computing pedestrian crash rates for intersections included daily pedestrian volumes, distance crossed and the AADT in addition to the number of pedestrian crashes either along the studied roadways or intersections. The pilot studies conducted for the roadways and intersections revealed several critical safety locations within District 5 when compared to the developed statewide average rates which required further investigation to identify main causes and emphasize mitigation improvements.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...