A Generalized Method to Extract Visual Time-Sharing Sequences From Naturalistic Driving Data

Publisher's full text

Indicators based on visual time-sharing have been used to investigate drivers' visual behaviour during additional task execution. However, visual time-sharing analyses have been restricted to additional tasks with well-defined temporal start and end points and a dedicated visual target area. We introduce a method to automatically extract visual time-sharing sequences directly from eye tracking data. This facilitates investigations of systems, providing continuous information without well-defined start and end points. Furthermore, it becomes possible to investigate time-sharing behavior with other types of glance targets such as the mirrors. Time-sharing sequences are here extracted based on between-glance durations. If glances to a particular target are separated by less than a time-based threshold value, we assume that they belong to the same information intake event. Our results indicate that a 4-s threshold is appropriate. Examples derived from 12 drivers (about 100 hours of eye tracking data), collected in an on-road investigation of an in-vehicle information system, are provided to illustrate sequence-based analyses. This includes the possibility to investigate human-machine interface designs based on the number of glances in the extracted sequences, and to increase the legibility of transition matrices by deriving them from time-sharing sequences instead of single glances. More object-oriented glance behavior analyses, based on additional sensor and information fusion, are identified as the next future step. This would enable automated extraction of time-sharing sequences not only for targets fixed in the vehicle's coordinate system, but also for environmental and traffic targets that move independently of the driver's vehicle.



Millions for research into maritime transport and the environment

Maritime transport is a major source of emissions of harmful air pollutants and carbon dioxide. In a new project, a research team from the Swedish National Road and Transport Research Institute (VTI) and the University of Gothenburg has received SEK 6.4...


New research programme for more efficient travel

The Swedish National Road and Transport Research Institute (VTI) is playing an important role in a major new research programme to find radical solutions leading to fewer trips and more efficient travel, along with tools to enable better use of roads and...


Simulator used to practice emergency responses safely

Emergency responses of the police, ambulance, and rescue services are associated with a high risk of accidents, but practicing them in real traffic is neither safe nor permissible. A simulator-based method developed by the Swedish National Road and Transport...


Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.



The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...