A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads

Publisher's full text
Jonas Osth
Karin Brolin
Mats Y. Svensson

Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic-elastic. The model has geometrical features representative of the female cervical spine-the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion-extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion-extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.

MEET US


7
Dec

Shipping and the environment – research meets reality

Centre for Transport Studies (CTS) in co-operation with Ports of Stockholm invite you to the seminar Shipping and the environment – research meets reality.

LATEST NEWS


2017-10-26

Simulation of cut-in by manually driven vehicles in platooning scenarios

A study in a VTI-driving simulator has showed that a platoon will be able to handle a cut in from a manually driven car. The results of this study have recently been presented at two conferences in Japan.


2017-10-16

ERPUG Forum

The five-year anniversary of European Road Profile Users' Group (ERPUG) Forum will take place at Ramboll head quarter, Copenhagen, Denmark October 19-20, 2017.


2017-09-29

Self-driving buses in Sweden next year?

A self-driving, fossil-free bus. This idea might become reality through a forthcoming collaborative project involving the Swedish National Road and Transport Research Institute (VTI), Linköping University and several other participants. The project group aim...


2017-09-29

New climate-proof solutions for hard surfaces in cities

High-density road infrastructure that emphasise maximum durability and minimum maintenance create inflexible systems, which put increased stress on urban trees and lead to increased risk for flooding. Over the past five years, the ‘Climate-proof solutions for...


2017-09-29

VTI is preparing for automated vehicles

Automation of traffic systems will lead to major changes. The European Union’s (EU) CoEXist research project began in June 2017 with the aim of preparing cities and road operators for the introduction of self-driving vehicles. The Swedish National Road and...


2017-07-05

Vehicle Driver Monitoring: sleepiness and cognitive load

To prevent road crashes it is important to understand driver related contributing factors, which have been suggested to be the critical reason in 94 per cent of crashes. The overall aim of the project Vehicle Driver Monitoring has been to advance the...